我需要 Flink的帮助。我在下面生成了一个简单的helloworld类型的代码。这将流式传输来自RabbitMQ的Avro消息并将其 persist化到 HDFSS。我希望有人可以检查代码,也许它可以帮助其他人。
我找到的Flink streaming的大多数例子都会将结果发送到std。实际上我想把数据保存到Hadoop中。我读到,理论上,你可以和 Flink一起去任何你喜欢的地方。实际上,我还没有找到任何将数据保存到 HDFSS的例子。但是,基于我所找到的例子,以及试验和错误,我提供了下面的代码。
这里的数据源是RabbitMQ。我使用 client应用程序将“MyAvroObjects”发送到RabbitMQ。MyAvroObject.java文件-不包括-由avro IDL生成。。。可以是任何avro消息。
下面的代码使用RabbitMQ消息,并将其作为avro文件保存到 HDFSS。。。好吧,我希望如此。
package com.johanw.flink.stackoverflow;
import java.io.IOException;
import org.apache.avro.io.Decoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroOutputFormat;
import org.apache.avro.mapred.AvroWrapper;
import org.apache.avro.mapreduce.AvroJob;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.hadoop.mapred.HadoopOutputFormat;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.FileSinkFunctionByMillis;
import org.apache.flink.streaming.connectors.rabbitmq.RMQSource;
import org.apache.flink.streaming.util.serialization.DeserializationSchema;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class RMQToHadoop {
public class MyDeserializationSchema implements DeserializationSchema<MyAvroObject> {
private static final long serialVersionUID = 1L;
@Override
public TypeInformation<MyAvroObject> getProducedType() {
return TypeExtractor.getForClass(MyAvroObject.class);
}
@Override
public MyAvroObject deserialize(byte[] array) throws IOException {
SpecificDatumReader<MyAvroObject> reader = new SpecificDatumReader<MyAvroObject>(MyAvroObject.getClassSchema());
Decoder decoder = DecoderFactory.get().binaryDecoder(array, null);
MyAvroObject MyAvroObject = reader.read(null, decoder);
return MyAvroObject;
}
@Override
public boolean isEndOfStream(MyAvroObject arg0) {
return false;
}
}
private String hostName;
private String queueName;
public final static String path = "/hdfsroot";
private static Logger logger = LoggerFactory.getLogger(RMQToHadoop.class);
public RMQToHadoop(String hostName, String queueName) {
super();
this.hostName = hostName;
this.queueName = queueName;
}
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
public void run() {
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
logger.info("Running " + RMQToHadoop.class.getName());
DataStream<MyAvroObject> socketStockStream = env.addSource(new RMQSource<>(hostName, queueName, new MyDeserializationSchema()));
Job job;
try {
job = Job.getInstance();
AvroJob.setInputKeySchema(job, MyAvroObject.getClassSchema());
} catch (IOException e1) {
e1.printStackTrace();
}
try {
JobConf jobConf = new JobConf(Job.getInstance().getConfiguration());
jobConf.set("avro.output.schema", MyAvroObject.getClassSchema().toString());
org.apache.avro.mapred.AvroOutputFormat<MyAvroObject> akof = new AvroOutputFormat<MyAvroObject>();
HadoopOutputFormat<AvroWrapper<MyAvroObject>, NullWritable> hof = new HadoopOutputFormat<AvroWrapper<MyAvroObject>, NullWritable>(akof, jobConf);
FileSinkFunctionByMillis<Tuple2<AvroWrapper<MyAvroObject>, NullWritable>> fileSinkFunctionByMillis = new FileSinkFunctionByMillis<Tuple2<AvroWrapper<MyAvroObject>, NullWritable>>(hof, 10000l);
org.apache.hadoop.mapred.FileOutputFormat.setOutputPath(jobConf, new Path(path));
socketStockStream.map(new MapFunction<MyAvroObject, Tuple2<AvroWrapper<MyAvroObject>, NullWritable>>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<AvroWrapper<MyAvroObject>, NullWritable> map(MyAvroObject envelope) throws Exception {
logger.info("map");
AvroKey<MyAvroObject> key = new AvroKey<MyAvroObject>(envelope);
Tuple2<AvroWrapper<MyAvroObject>, NullWritable> tupple = new Tuple2<AvroWrapper<MyAvroObject>, NullWritable>(key, NullWritable.get());
return tupple;
}
}).addSink(fileSinkFunctionByMillis);
try {
env.execute();
} catch (Exception e) {
logger.error("Error while running " + RMQToHadoop.class + ".", e);
}
} catch (IOException e) {
logger.error("Error while running " + RMQToHadoop.class + ".", e);
}
}
public static void main(String[] args) throws IOException {
RMQToHadoop toHadoop = new RMQToHadoop("localhost", "rabbitTestQueue");
toHadoop.run();
}
}
如果您喜欢RabbitMQ以外的另一个源,那么使用另一个源就可以了。E、 g.使用 Kafka 消费者:
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer082;
...
DataStreamSource<MyAvroObject> socketStockStream = env.addSource(new FlinkKafkaConsumer082<MyAvroObject>(topic, new MyDeserializationSchema(), sourceProperties));
问题:
- 请复习。这是将数据保存到 HDFSS的好做法吗?
顺便说一下,当你想把数据保存回 Kafka 的时候,我可以用。。。
Properties destProperties = new Properties();
destProperties.setProperty("bootstrap.servers", bootstrapServers);
FlinkKafkaProducer<MyAvroObject> kafkaProducer = new FlinkKafkaProducer<L3Result>("MyKafkaTopic", new MySerializationSchema(), destProperties);
提前多谢!!!!